On the Parametrization of Ill - posed Inverse Problems Arising from Elliptic Partial Differential
نویسندگان
چکیده
On the Parametrization of Ill-posed Inverse Problems Arising from Elliptic Partial Differential Equations by Fernando Guevara Vasquez Electric impedance tomography (EIT) consists in finding the conductivity inside a body from electrical measurements taken at its surface. This is a severely ill-posed problem: any numerical inversion scheme requires some form of regularization. We present inversion schemes that address the instability of the problem by proper sparse parametrization of the unknown conductivity. To guide us, we consider a consistent finite difference approach to an inverse Sturm-Liouville problem arising in EIT for layered media. The method first solves a model reduction problem for the differential equation where the reduced model parameters are essentially averages of the conductivity over the cells of a grid depending on the conductivity. Fortunately the dependence is weak. Thus one can efficiently estimate conductivity averages by using the grid for a reference conductivity. This simple inversion method converges to the true solution as the number of measurements increases. We analyze the sensitivity of the reduced model parameters to small changes in the conductivity, and introduce a Newton-type iteration to improve the reconstructions of the simple inversion method. As an added bonus, our method can benefit from a priori information if available. We generalize both methods to the 2D EIT problem by considering finite volumes discretizations of size determined by the mesurement precision, but where the node locations are to be determined adaptively. This discretization can be viewed as a resistor network, where the resistors are essentially averages of the conductivity over grid cells. We show that the model reduction problem of finding the smallest resistor network (of fixed topology) that can predict meaningful measurements of the Dirichlet-to-Neumann map is uniquely solvable for a broad class of measurements. We propose a simple inversion method that, as in the simple method for the inverse Sturm-Liouville problem, is based on an interpretation of the resistors as conductivity averages over grid cells, and an iterative method that improves such reconstructions by using sensitivity information on the changes in the resistors due to small changes in the conductivity. A priori information can also be incorporated to the latter method.
منابع مشابه
Ill-Posed and Linear Inverse Problems
In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.
متن کاملNew variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs
In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...
متن کاملConditional Stability Estimates for Ill-posed Pde Problems by Using Interpolation
The focus of this paper is on conditional stability estimates for illposed inverse problems in partial differential equations. Conditional stability estimates have been obtained in the literature by a couple different methods. In this paper we propose a method called interpolation method, which is based on interpolation in variable Hilbert scales. We are going to work out the theoretical backgr...
متن کاملOn a Level-Set Method for Ill-Posed Problems with Piecewise Nonconstant Coefficients
We investigate a level-set-type method for solving ill-posed problems, with the assumption that the solutions are piecewise, but not necessarily constant functions with unknown level sets and unknown level values. In order to get stable approximate solutions of the inverse problem, we propose a Tikhonov-type regularization approach coupled with a level-set framework. We prove the existence of g...
متن کاملSolving Ill-Posed Cauchy Problems by a Krylov Subspace Method
We study the numerical solution of a Cauchy problem for a self-adjoint elliptic partial differential equation uzz − Lu = 0 in three space dimensions (x, y, z) , where the domain is cylindrical in z. Cauchy data are given on the lower boundary and the boundary values on the upper boundary is sought. The problem is severely illposed. The formal solution is written as a hyperbolic cosine function ...
متن کامل